Signature of a Quarkyonic Phase in the QCD Phase Diagram

Ágnes Mócsy Pratt Institute, Brooklyn, NY

Pratt

in collaboration with Paul Sorensen (BNL)

CPOD @ BNL June 2009

Baryon-Baryon Correlations as Signature of 1st Order Phase Transition in Heavy Ion Collisions

Ágnes Mócsy Pratt Institute, Brooklyn, NY

Pratt

in collaboration with Paul Sorensen (BNL)

CPOD @ BNL June 2009

In this talk

- Motivation to look for baryon-baryon correlations
- Our Bubble Monte-Carlo Blast-Wave Model
- Correlation results: mapping the parameter space
- Implications for experiments

QCD Phase Diagram

Quarkyonic Phase

Baryon number order parameter for 1st order transition - Hidaka, McLerran, Pisarski 2008

crossing a transition with a jump in baryon number (very small to finite) leads to baryon rich cluster formation

Quarkyonic Phase

Baryon number order parameter for 1st order transition - Hidaka, McLerran, Pisarski 2008

crossing a transition with a jump in baryon number (very small to finite) leads to baryon rich cluster formation

note: we explore observables different from baryon number fluctuations

Bubble Nucleation

Ist order transition from quarkyonic to mesonic phase goes through nucleation

- Baryons trapped in quarkyonic bubbles during transition
- Flow can translate spatial correlations to momentum-space

Generic for 1st order transition between baryon rich and baryon poor phases

Similar to Gavin 2001, but we consider momentum space correlations Also see Randrup, consequences of spinodal break-up

The Phenomenology: Bubble Monte-Carlo Blast-Wave

Generate N_B total baryon number in an event

$$dN/dN_B \sim exp\{-(N_B - \bar{N}_B)^2/2\bar{N}_B\}$$

Generate n_B number of baryons per bubble

$$dN/dn_B \sim exp\{-(n_B - \bar{n}_B)^2/2\bar{n}_B\}$$

Distribute bubbles in coordinate space

longitudinal: flat distribution transverse: center & surface density profile

Distribute baryons inside bubbles

$$dN/dxdydz \sim 1/(1 + \exp\{-(r_{bubble} - R)/a\})$$
$$r_{bubble} = 0.6 \text{ fm}(n_B)^{1/3} \qquad a = r_{bubble}/8$$

Spatial Correlations

Study how spatial correlations manifest in momentum space

Use discrete set of MC baryons as the source Ω in a blast-wave

Input spatial points and radial boost; blast-wave returns probability of momentum coordinates

caveats: 1) instantaneous boost can violate causality 2)no momentum conservation

Emission function: **√**

$$S = m_T \cosh(\eta - Y)\Omega(r, \phi_s) \sum_{n=1}^{\infty} (-1)^{n+1} e^{na\cos(\phi_s - \phi_p)} e^{-nb\cosh(\eta - Y)}$$
Lisa, Retiere 2003

radial boost: $\beta = \beta_0 r$

Correlation Studies

Look at baryon-baryon correlations vs relative angle ($\Delta \phi$ and $\Delta \eta$) based on the variable

$$\frac{\Delta \rho}{\sqrt{\rho_{ref}}} = \frac{\rho - \rho_{ref}}{\sqrt{\rho_{ref}}}$$

Normalization assures independence of total number of baryons per event N_B

 ρ = pair density ρ_{ref} = product of single particle densities

We study dependence on average number of baryons per bubble n_B a range of radial flow β and bubble decay temperature T & emission geometry Ω

Our study neglects global fluctuations. We focus on the shape of the correlation function.

Varying no. Baryons per Bubble

bubble nucleation + flow leads to small angle correlations

good description by gaussian

- amplitude A, rms σ

correlation grows as n_B-1

assumptions:

- all baryons come from bubbles (no dilution from background)
- strong flow and low temperature at time of bubble decay

Temperature Dependence

Correlation is weaker for bubbles decaying at higher temperature

Competition between T and boost from flow

A phase transition at higher T will be harder to detect

Pocket formula: $\sigma = 0.694 - 0.00639 * T + 0.0000435 * T^2$

Radial Flow Dependence

Flow is required to convert coordinate-space correlations to momentum-space

Correlation is stronger for bubbles with larger boost

An early phase transition, at T before flow develops will be hard to detect

Pocket formula: $\sigma \approx 1.357 - 1.367 \times \langle \beta \rangle$ valid for $0.29 < \langle \beta \rangle < 0.75$

Longitudinal Width

 Δy width narrows with T_{decay}

 $\Delta \varphi$ width depends on T & $\langle \beta \rangle$: both depend on τ_{decay}

Signatures of transition will be strong if transition is near freeze-out

Pocket formula: $\sigma_{v} = 0.37 + 0.47\tau^{-1.58}$

$$\tau_{decay} - \tau_0 = 9 \, fm$$

For more accurate exclusion zone: dynamic model needed to relate flow, T, μ_B and time

Summary & Conclusion

A 1st order phase transition will lead to spatial correlations between baryons via bubble nucleation

Flow can translate those correlations to near-side baryon-baryon momentum space correlations; a smoking gun for 1 st order phase transition

Characteristics of correlations have been estimated for different flow strengths, temperatures and decay times

Lack of signal excludes the presence of a 1st order phase transition within some range: dynamic model needed for more accurate exclusion region

*** The End ***